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Note 

The Role of Diagonal Dominance and 
Cell Reynolds Number in Implicit Difference 

Methods for Fluid Mechanics Problems 

The success of implicit methods for certain classes of problems, notably boundary 
layer flows where marching steps hundreds of times the explicit stability step size 
limit are used [I], leads to the question of their use for more general flows, i.e.; 
Navier-Stokes solutions. The purpose of this paper is to identify some of the 
difficulties associated with implicit solution methods for the Navier-Stokes 
equations. 

ANALYSIS OF BURGERS’ EQUATION 

A simple equation which has both hyperbolic and parabolic properties is Burgers’ 
equation 

uc + au, = vu,, , (1) 

where a can be a function of u, 5, ‘I. The two-dimensional boundary layer equations 
integrated into the inviscid region is another example. Equation (1) can be 
differenced implicitly using forward time, central space differences 

,;+1 - 2.4” + a ( u;:2;qc: 
4 1 ( 

n-l-1 = v %+l - 2ujn+1 + u3”-:’ 
fw 1. (2) 

Performing the usual linear von Neumann stability analysis on Eq. (2), with 

u.n = U,(n) &id?, 3 

gives, for the amplification factor, G, 

1 G I2 = 1 u”go(;) *) I2 = (1 + & + 8” 9 
where 

- cm +>, aA5 /3 = 7 sin 4, += ~4~. 

(3) 
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Now, examining the condition for diagonal dominance of the matrix which 
arises from the differencing (2), i.e., 

(-C/Z - D) 24;:; + (1 + 20) u;+l + (C/2 - D) #i"+:' = Uj" (4) 

gives 

where 

Solving this gives 

when 

I 1 + 20 I > I C/2 + D I + I C/2 - D I 

c= aAt 

4 ' 
D=+. 

1+2D>ICl, W 

I Cl/20 > 1. (5b) 

When 1 C j/20 < 1, the matrix is always diagonally dominant. This quantity 
which governs the diagonal dominance condition is 

ICI - = 1 Ial4 -___ = $” 
20 2 v 

where R, is the cell Reynolds number. Rewriting operations (5a) and (5b) gives 

1 
I ’ I ’ 1 - 2/R, ’ R, > 2, 

to maintain diagonal dominance. 
Hence, if one is concerned with diagonal dominance, keeping R, < 2 assures 

the condition independent of the size of the marching step. For values of R, > 2, 
Eq. (7) gives the marching step size, A& which must be used to assure diagonal 
dominance. As R, increases, Eq. (7) indicates that the inviscid limit, C < 1, is 
approached, and thus the usefulness of implicit methods is progressively weakened. 

When confronted with a Navier-Stokes solution in which large inviscid regions 
appear, one might be tempted to think of this extreme Reynolds number case, 
i.e., C < 1, as imposing a stability limitation on the marching step. This argument 
has two flaws. First, when an equation of the type (1) is differenced, even in an 
inviscid region, the terms involving v are still present. In inviscid regions v does not 
go to zero, but rather the cumulative effect of the entire diffusive term; the second 
derivative itself becomes negligible. Equation (2) is still the result of differencing a 
“viscous” equation in an inviscid region. Thus, Eq. (7) governs the diagonal 
dominance of the matrix, not the C < 1 limit obtained when v = 0. 
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Even in cases when v = 0 could be considered the correct physical description 
of the process being studied, condition (7) does not imply the differencing (2) is 
unstable, since it was not derived from any stability analysis. The stability of 
Eq. (2) is implied in the result of Eq. (3). If v, hence W, is zero, the amplification 
factor is still less than or equal to one; thus the difference equation (2) is always 
stable. Relation (7) simply indicates that the sufficient condition for convergence 
of the matrix inversion is guaranteed by / C 1 < 1. Violation of this sufficient 
condition implies the possibility of round-off error destroying the inversion. 
However, being only a sufficient condition, violation does not mean the Thomas 
algorithm will not work, only that it might not. If assurance of inversion is sought, 
possibly a partial pivoting technique could be employed. The main point that 
should be noted is that condition (7) does not arise from a stability analysis, and 
is not a restriction on the implicit differencing method. Only a different matrix 
inversion might be necessary when Eq. (7) is violated. 

In addition to the possibility of round-off error accumulation if the cell Reynolds 
number is greater than two, the use of central differences for the convection term 
affects the resolution of the results. This is manifested by the “wiggles” in the 
solution as described by Roache [2]. These wiggles are not round-off error but 
are the exact algebraic solution of the equations. 

NUMERICAL EXPERIMENTS WITH BURGERS’ EQUATION 

The step size behavior (effects of the Courant number, C), cell Reynolds number 
behavior, and their effects on the diagonal dominance of the solution matrix 
were tested on the numerical solution of Burgers’ equation. For the numerical 
calculations, Burgers’ equation was solved using a wave oriented coordinate 
system. The nonconservative form of the equation is 

where U is the steady state wave speed. The boundary conditions were taken to be 

u(?j, t) = 1.0, ?1---M, 

4% 0 = 0, 7 -+ co. 

Using forward time, central space differences Eq. (8) becomes 
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To effect a solution the nonlinear coefficient was iterated at each time step. The 
wave speed U was set equal to l/2. 

Different values of v and de were used for a hxed value of dq = 0.2. Fifty-one 
grid points were used. A linear velocity distribution was used to start the solution. 
The Thomas algorithm was employed to solve the resultant set of simultaneous 
algebraic equations at each time step. The solution was assumed to have reached 
steady-state when the maximum change in u between time steps was less than 10-5. 

FIG. 1. Effect of cell Reynolds number on computed solutions to Burgers’ equation. (a) 
Y = l/8, R, = 0.8, (b) Y = l/16, R, = 1.6, (c) Y = l/24, R, = 2.4, (d) Y = l/48, R, = 4.8. 

For the cases where v = l/S and v = l/16 (cell Reynolds numbers of 0.8 and 1.6, 
respectively), the solutions converged rapidly to steady state values for u (see 
Fig. 1) which compared well with the analytic solution [3]. Various values of C 
(0.25 < C d 106) were used with no deletrious effects on the solution; however, 
beyond C = 500 the number of steps needed to reach steady state was constant, 
e.g., for v = l/l6 

Courant no. Steps to steady state 

0.25 206 
0.5 113 
1 65 
5 25 

10 20 
50 16 

100 16 
500 15 

10” 15 
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For cases of lower viscosity, values of v = l/24 and v = l/48 were used, 
the maximum cell Reynolds number exceeded 2 (Rc,,, = 2.4 and 4.8, respectively) 
and diagonal dominance was lost. When solutions could be obtained they exhibited 
oscillations as shown in Fig. 1, which qualitatively reproduce the behavior shown 
by Roache [2]. It was possible to compare point by point the v = l/24 solution 
to one obtained by simple forward time, centered space explicit differencing [2]. 
The results were identical to seven decimal places. Thus, the “wiggles” appear, 
independent of the method, due solely to the central differencing of convection. 
The converged solutions obtained all had values of C > I. 

An attempt was made to determine why no degradation of the solution occurred 
when the diagonal dominance condition was not satisfied. The implementation 
of the Thomas algorithm requires a back substitution for the unknown U, from 
the formula [4] U, = o,&+r + g,n where for no round-off error I w, I < 1. 
Following Mitchell, a typical w, can be written as 

where the 01, /?, y terms are the coefficients of the matrix equations 

-%num-1 + PnUm - yJJm+l= hl* 

Assuming all w, < 1 until the present point m, we can examine 

From the difference equation (4) substituting for the coefficients yieids 

(C/2 - a 
wm = [l - (C/2 - D)] * 

The most severe case occurs when the denominator vanishes, i.e. 

C/2 - D = C(1/2 - l/&) = 1. 

Thus when 

C = 2R,/(R, - 2), (12) 

the error growth might be expected to be near maximum. Test cases were examined 
using the value of C from Eq. (12) for v = l/24 and v = l/48. For v = l/24 
convergence was obtained for 1.0 < C < 106. For v 7 l/48, the solution would 
not converge for a C given by Eq. (12), but as C was increased beyond 25, the 
solution again converged. This v = l/48 behavior may be interpreted from Eq. (11). 
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As C grows, Eq. (11) can be expanded for large C as 

0 - -1 - 2/c + 0(1/P). 3X- 

When C is large, although j w, 1 is still greater than one, the error growth is so 
small that no accumulation occurs in the number of steps used for this particular 
matrix inversion. 

The convergence of the v = l/24 case can be explained by reexamining the 
matrix inversion technique. To get Eq. (lo), all previous values of w, were assumed 
to have their maximum allowable value, i.e., j w, / = 1. If, as occurs in the 
v = l/24 calculation, the values are quite small, i.e., I U, / = E < 1, then Eq. (10) 
becomes 

The analog of Eq. (11) is then 

w - (C/2 - a 
nz - (1 + 20) 

neglecting the E term. This value of w, is always less than one for v = l/24, and 
so no error growth occurs. 

Another test was to artifically induce a small error on one of the boundaries 
to see if this induced error affected the solution. A boundary condition change 
from u = 1.0 to u = 1.0 + 1O-5 was investigated. For the cell Reynolds number 
less than 2, the solution converged rapidly to a steady state. When v = l/24 
(R, = 2.4) was used, for a time step which previously gave the converged result 
of figure 1, no converged solution was obtained. Changing the values of C in this 
case did not alter the resulting nonconvergence. 

CONCLUSIONS 

The findings of this investigation show that the accuracy of the inversion of a 
tridiagonal matrix obtained from implicit differencing is governed by the cell 
Reynolds number. For R, < 2, the matrix inversion is assured. For R, > 2, 
diagonal dominance, which assures the matrix inversion, is lost and round-off 
error can degrade the solution. 

As R, increases, the diagonal dominance condition reduces the size of the 
effective marching step until, in the limit R, > 1, the explicit stability limit, 
C < 1, is obtained as the condition for maintaining diagonal dominance of the 
implicit method. Solutions which are obtained for R, > 2 may be inaccurate, 
although there is no a priori way to determine if this is so. 
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It should be noted that central differences were used throughout this discussion. 
Other techniques might produce different cell Reynolds number behavior, e.g., 
upwind differencing produces a matrix which is always diagonally dominant. 
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